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How Likely Is Polya's Drunkard to Stay in x i> y i> z? 
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In his celebrated paper, Polya has considered the random walk in the three- 
dimensional (cubic) lattice and showed that the probability of return to the 
origin is less than I. Subsequent authors have shown that tile probability is 
%34.053.... Here we consider the same random walk, with the restriction that 
the drunkard is only allowed to stay in x ~> y/> z. It is shown that his proba- 
bility of returning to the origin and staying in the allowed region is %6.4844 .... 

KEY WORDS: Restricted random walk; method of images; return proba- 
bility; linear partial recurrence equations. 

1. I N T R O D U C T I O N  A N D  R E S U L T S  

We will consider the cus tomary  (discrete time) r andom walk in the three- 
dimensional cubic lattice. Here a particle is allowed to make any one of  the 
six steps (_+ 1, 0, 0), (0, +1 ,  0), and (0, 0, + 1 )wi th  equal probability. Let 
an be the number  of  ways of  going from the origin back to the origin in 2n 
steps. Polya  ~I) showed that  the probabil i ty a,,/62n that  the particle will 
return to the origin after 2n steps is ~< C/n 3/2, for some constant  C in- 
dependent  of n, and thus that  the expected number  of visits to the origin 
m = Z ~  a J 6  an is finite, and thus that the probabil i ty of ever returning to 
the origin, u = ( m - 1 ) / m ,  is less than l. Subsequent  authors  (2-5) (see also 
p. 126 in Doyle  and Snell's book  (6)) have found that  m = 1.516386059137 .... 
and thus u = 0.340537329544 .... 

The following results concerning an are either well known (7'8) or easily 
derivable from well-known results. Theorem 4 seems to be new. 
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T h e o r e m  1 : 

T h e o r e m  2: 

T h e o r e m  3. 

(2n)! (2k)! 
a, ,= k ( n _ k ) ! 2 k ! 4  k=O 

~ (--1)"a,~ t2 , = j o ( _ 2 i t ) 3  
,,=o (2n)! 

aft62" ~ [ �88 (31~) 312 ] n - 312 

T h e o r e m  4: 

36(n + 1 )(2n + 3)(2n + 1)a, - 2(2n + 3)(10n 2 + 30n + 23)an + 1 

+ (n + 2)3a,,+2 = 0  

In this paper we will give counterparts to the above theorems for ~n, 
the number of ways of returning to origin after 2n steps and always staying 
within x >t y>~ z. In other words, we assume that the "walls" x - y  = -1  
and y - z  = -1  are "absorbing" and the drunkard dies if he bumps into a 
wall. Such restricted random walks have been studied by Huse e ta / .  (9"1~ 
and by Fisher, (11) in order to model commensurate melting and wetting, 
and to study dislocation. 

The following results will be proved. 

T h e o r e m  A: 

n (2n)!  (2k)! 

a.= ~, ( n - k ) ! ( n + l - k ) ! k !  2 ( k + l )  v2 k=O 

T h e o r e m  B: 

(--1)"G~ 
t2" = de t [J ,  k ( - 2 i t ) ] ,  ~,,k~3 

,=o (2n)! 

T h e o r e m  C: 

an ( 39/2 "~ 
~ t 
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Theorem D: 

- 72(n + 2)(n + 1 )(2n + 9)(2n + 5 )(2n + 3 )(2n + 1 ) ~i~ 

+ 4(n + 2)(2n + 5)(2n + 3)(38n 3 + 381n 2 + 1252n + 1377)~ + 

- 2(n + 3)(2n + 5)(22n 2 + 145n + 229)(4 + n)Ztin + 2 

+ (2n + 7)(n + 3)(n+ 5)2(4 + n)2d,+ 3=O 
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2. PROOFS OF T H E O R E M S  1-4 

For the sake of completeness, we will first sketch the proofs of 
Theorems 1-4. 

Sketch of Proof of Theorem I. For the walker in three dimensions 
to return, the walker must take an equal number of steps in the different 
directions. (6) Thus, we have 

a .  = ~ . (2n)[ 

j ,~ j ! j !  k! k! ( n - j - k ) !  ( n - j - k ) !  

The summation over j is evaluated exactly by the Vandermonde-Chu 
identity, (12) and we get the single sum of theorem 1. | 

We will need the following lemma. 

k e m m a  1. Let p(e, fl, 7; a, b, c; n) be the number of possible walks, 
with n steps, from (c~, fl, 7) to (a, b, c). For  any Laurent polynomial F, let 
C T F  stand for coefficient of x~176 ~ in F. We have 

P(a, fi, 7; a, b, c; n) = CT 
( x + x  l + y + y  l + z + z - 1 ) n  

xa-~yb--B zC- 7 

Proof. ' Without loss of generality, we can take (a, fi, 7) = (0, O, 0). 
Expanding out (x + x -1 + y + y 1 + z + z-X) n simulates all possible walks, 
and the number of those that wind up at (a, b, c) is exactly the coefficient 
of x"ybz C. | 

Recall that the Bessel functions Ja(x) have the generating function (13~ 

Ja(z)wa=exp[(z/2)(w--w 1)3 (1)  
a ~  c o  

Proof of Theorem 2. By Lemma 1, we have that 

an=CT(x+ x l + y + y - l + z + z  l)2n 
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Thus, 

~ ( -1)ha ,  t2, 
,=o (2n)! 

= ~ C T ( _ l ) ~ t 2 . ( x + x - l + y + y - l + z + z  1)2. 

,=0 (2n)! 

= C T  ~ ( - i t ) 2 ~ ( x + x - l +  y + Y - l + z + z - 1 ) 2 "  
~=o (2n)! 

( _ i t ) , ( x + x  l + y + y  1+z + 1)~ 
~ C T  

~ = ~ n! 

since C T ( x + x  -~ + y+  y-1 +z+z-~)2,+~ =0. But the right side is equal 
to 

CTexp[(x  + x -1+ y+  y - i  + z + z-1)(_i t )]  

= CTexp[(x  + x 1 ) (  _ it)] exp[(y + y - l ) (  _ it)] exp[(z + z -1 ) ( -  it)] 

By (1) this is equal to 

C T ( ~ J a ( - 2 i t ) ( - i x ) ~ ) ( ~ J b ( - 2 i t ) ( - i Y ) b ) ( ~ J ~ ( - 2 i t ) ( - i z ) C )  

=Jo(-2 i t )  3 | 

Replacing CT above by the coefficient of xa-~yb-~Z c ~, we have the 
following result. 

Lemma 2: 

( - 1 )" t___._._~ ~ 

,=o n! 

=(_i)(a+b+ . . . .  '-~) Ja ~(-2it) J b - , ( - 2 i t ) J c  ~(-2it) I 

Sketch o[ the Proof of Theorem 3. Theorem 3 can be obtained by 
using a method described in pp. 65-67 of Knuth's book, t14~ but it may also 
be shown directly using a result of Wimp, (is) 

f - n ,  - n - 2 ,  c~+ l ) 
3F2\ 2 + 1 , ~ + f l + 2  ;w 

F(~+f l+Z)  V ( 2 + l )  W-)./2--fl/2 3/4(l +~f-'WW)2n+22+#+2n-2-~ 3/2 
F(7+ 1) 27"C 1/2 

n ~ o o ,  ~,fl, 2> -1,  w>O 
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and noticing that an may be written as a hypergeometric series 

4n(1/2)n (--n,--n, 1/2,4) | 
an -- n ~  3F2 1, 1 ' 

Ske tch  of  the Proof  of  Theorem 4. Zeilberger (16) proved that every 
binomial coefficient sum satisfies a homogeneous linear recurrence 
equation with polynomial coefficients, and he also developed an efficient 
algorithm for finding and proving it. (17) A MAPLE program implementing 
this algorithm is available from Zeilberger upon request. Theorem 4 was 
discovered and proved by this program. Since MAPLE is readily available, 
and the interested reader can request the program, there is no point in 
reproducing the proof. Furthermore, readers who have MACSYMA can 
prove Theorem 4 for themselves as follows. Let.F(n, k) be the summand on 
the right side of Theorem 1. Evaluate the expression obtained by replacing 
a,  on the left of Theorem 4 by F(n, k), and apply Gosper's command 
nusum (with respect to k) to it, and call the result G(n, k). Theorem 4 
follows upon observing that G(n, k) vanishes for large Ikl. | 

3. P R O O F S  OF T H E O R E M S  A - D  

We will start by proving Theorem B. We first need the following 
result. 

L e m m a  3. Let q(a, b, c; n) be the number of ways of walking n steps 
from (0, 0, 0) to (a, b, c), and staying within x ~> y ~> z; then 

q(a, b, c; n) 

= CT[(1 - x/y)(1 - x/z)(  1 - y / z ) (x  + x 1 ~_ y .~_ y--I  ~_ Z ~- Z--1 )n/xaybzc ] 

(2) 

Proof. This can be proved using "Kelvin's method of images," as 
given by formula (5.9), p. 682, of Fisher's paper. (~) Alternatively, if follows 
from the observation that both sides of (2) satisfy the recurrence 

F(a, b, c ; n ) = F ( a - -  1, b, c ; n -  1 ) + F ( a +  1, b, c ; n -  1) 

+ F(a, b -  1, c ; n -  1)+ F(a, b +  1, c ; n -  1) 

+F(a,  b, c -  1; n -  1)+F(a ,  b, c +  1 ; n -  1) 

subject to the initial and boundary conditions that uniquely determine it: 

F(a, b, c; 0) = ~,o ~b,o ~c,o, 

F(a,b,c;n)=_O on a - b = - I  and b - - c = - I  | 
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Proof of Theorem B. Expand ( 1 - x / y ) ( 1 - x / z ) ( 1 - y / z )  inside the 
expression of Lemma 3 for 6n=q(0,  0, 0; 2n), take the exponential 
generating function, and use Lemma 2. | 

Proof of  Theorem A. Let D(t) be the determinantal expression on 
the right of Theorem B. Writing J ~ = --J1 and J_2 = J2 and expressing J2 
in terms of J0 and J~ gives {13) 

(2~it) Jl(2it)EJZ(2it) + JZ(Zi t ) -  (1~2it) Jo(2it) Jl(2it) ] 

Now the product in the brackets may be written as hypergeometric func- 
tions 1F2 .(~8) We get, on combining terms, 

(1~2it) JZ(2it) - (1~2it) JZ(2it) + [-1/(4t 2) ] Jo(Zit) J~ (2it) 

1 ~ (--1)k(1/Z)k(2it) 2k 

= 2 k ~ o  k!(2)k 

Now, multiplying this by 

4Jl(2it) = 4it ~, 
( )k(it)2k 

k=o k! (2)k 

and collecting the coefficient of t 2" yields Theorem A. 

Sketch of  the Proof of  Theorem C. Same as the proof of 
Theorem 3. | 

Sketch of  the Proof of  Theorem D. Same as the proof of 
Theorem 4. I 

To find rh, the expected number of visits at the origin, we computed 
an for n = 0. . .  1000, using Theorem D, and summed ~in/62~. By Theorem C 
the terms grow like Gin 9/2, and thus the error committed by quitting after 
N terms is GIN 7/2, which for N =  1000 gives well over nine digits after the 
decimal point. We got rh = 1.0693411 .... 

Let ~ be the probability that the particle will ever return to the starting 
point, staying within x/> y/> z. Then, of course, rh = 1 + ~ + ~2 + . . . .  
1/(1 -- ~7), and thus ~ = 1 - 1/r~ = 0.06484471 .... 

4. C O N C L U S I O N  

We have used an interplay of various techniques to give precise 
quantitative information about the random walk in the region x >/y/> z. 
The techniques we have used are: the method of images, partial difference 
equations, exponential generating functions, asymptotics of hypergeometric 



Polya's Drunkard 1135 

functions,  and  Zei lberger ' s  p r o g r a m  for genera t ing  and  proving  l inear  
recurrences satisfied by b inomia l  coefficient sums. In o rde r  to get the 

a sympto t i c  fo rmula  of Theorem C and the recurrence of  Theorem D, we 
needed first the explicit  express ion of Theo rem A. Theorem A, in turn,  was 
proved  using the exponent ia l  genera t ing  function of  Theorem B. The 
present  me thods  should  extend to higher  d imensions  and  different regions 
and lattices. 
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